

# Best business practices on Eco-innovation A SME's point of view

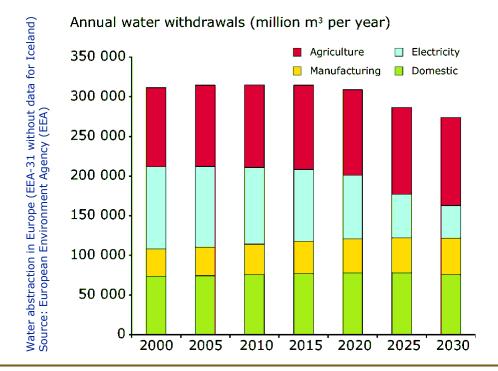
André Reigersman - RWB Water Services BV

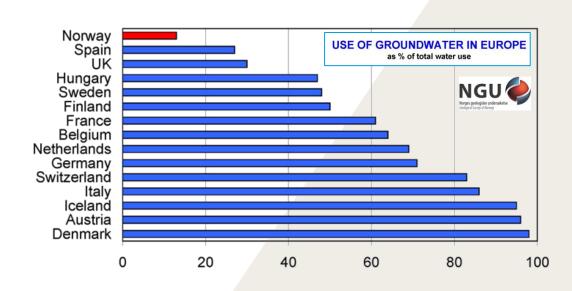












### Solutions for efficient water usage



### • Did you know:

- 5 minutes shower ≈ 30 liters to drain + 2 liters fresh groundwater production waste
- Spent filter backwash water ≈ 2.000.000.000.000 liters per year in Europe
- Dutch + Swedish drinking water consumption ≈ 2 km<sup>3</sup>

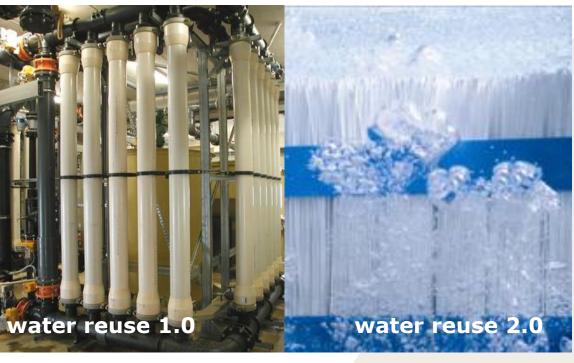






### **Spent filter backwash water**








### **Spent filter backwash water**

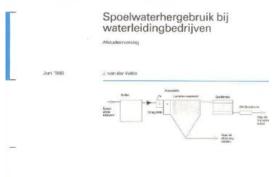






### **Conventional:**

Treatment and discharge Standard industry practice


### State-of-the-art:

Reuse (polymer membranes) *Mandatory or economical viable* 



### Research on backwash water reuse











1993



Figure 1: HYDRAcap Installation at Seedy Mill WTW

### Operating parameters

Field experience indicates that, for backwash water recovery applications, larger ID capillary fibres are required, as compared to the conventional 0.8 mm, to prevent plugging of the fibre bere. A 50% larger ID of 1.2 mm is sufficient to prevent fibre blockage by suspended matter encountered in filter backwash effluent. The LD module contains approximately 23rds of the area of the standard fibre module.

A pilot unit, equipped with the HYDRAcap LD module, was operated for the treatment of filter backwash effluent at Seedy Mill. The objective of the study was to optimize process parameters for a design of a full-scale commercial system at this location. The unit was treating supernatunt from a continuous thickener. The thickener was receiving backwash water from a commercial filtration system processing surface water for potable use. The module operated at a filtrate flux rate range of 80 – 100 l/m² hr (44-55 gft0. The time between backwash cycles was 20 min.

The backwash operation was initiated with a 5 sec forward flush at a flow rate of 7.5  $\text{m}^2/\text{n}\text{r}$  (33 gpm) (though in the main plant design, this has been replaced by an air





Desalination 198 (2006) 225-235 =

DESALINATION

www.elsevier.com/locate/desal

### Ultrafiltration for the reuse of spent filter backwash water from drinking water treatment

Florian G. Reissmanns<sup>1</sup>, Wolfgang Uhl<sup>b</sup>

"Ingemieurbio fir Mozer und Boden GmbH. Turnerveg 6, 01728 Postendorf Germany
Tel. +49 (35206) 21705; Fac: +49 (35206) 21701; email: Reissmannighish postendorf de
"Institute for Urban Water Management, Technische Universität Dresden, 01001 Dresden, Germany

Received 3 November 2005; Accepted 7 March 2006

### Abstract

During most water tentament processes, spent filter backwash water (SFRW) as generated. Resize of SFRW is of concern became of the possible recycling of heavy metals, precursors for distinction by-prochect and micro-organisms. Innovations in membrane sectionology, especially in micro- and ultrafilmation processes, offers a suitable tentiment for SFSW in content parameters water quality necessary for rease. Results from applicated such as full-scale surface tentiment plant with pubmenged membranes are presented. Experiments were performed with SFBW from a full-scale water tentiment plant. The plant was operated with high future of more than 4.0 Lim? b) using clarified and non-clarified SFBW. Best membrane performance was obtained using non-clarified SFBW, as testif, no space- and time-consuming selementation processes are necessary. The spreame of powdered activated curbon in the SFBW did not have a negative impact on flux and TMP. Results confirmed that the filtrate can be used as an additional and safe water concer. We have a continuous maintenance desircher on was proceded. Fallers were five officiarities of the statement of

Keywords: Ultrafiltration; Water reuse; Drinking water treatment; Spent filter backwash water

### 1. Introduction

In several parts of the world, water reuse is becoming an important issue to satisfy future

\*Corresponding author

water demands. A continuously increasing world population as well as higher quality standards and expenses for drinking water lead to numerous efforts to apply water reuse systems. Membrane technology offers a wide range of possibilities to

Presented at the 3nd Membrane Science and Technology Conference of Visegrad Countries (PERMEA), Polanica Zdroj, Poland, 18–22 September 2005.

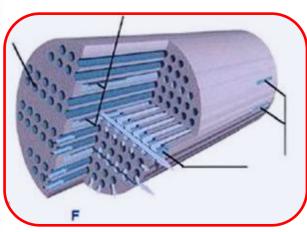
0011-9164/06/\$- See front matter © 2006 Elsevier B.V. All rights reserved



2006

Ceramic membrane applications for spent filter backwash water treatment




2007 / 2008

# **Comparative pilot test**





















Re-use of backwash water Comparative study of 6 MF/ UF membranes

### **Best Available Technique: Ceramic membranes**



- Reduced costs: production of large filter elements
- Outperforms state-of-the-art
  - High reliability
  - Small footprint
  - Less energy
- Suitable for large and small quantities
- Meets sanitary standards regulations





# **Best Available Technique: Full scale demonstration**



### **Increased Water Efficiency**

with **Ceramic** membrane technology

Construction: July 2012 – March 2014

Demonstration: April 2014 – June 2017

Launching customer: Vitens N.V.

Project management: Vitens N.V. (Ontwerp en Aanleg)

Technology: RWB Water Services B.V.

Eurosteel Sp. Z.o.o.

RWD


Grant advisor: Evers + Manders







Co-funded by the Eco-innovation Initiative of the European Union





### **Project in partnership**



### Launching customer Vitens,

- is the largest drinking water company in the Netherlands
- supplies drinking water to 5.4 million people with a total annual production of 330 million m<sup>3</sup>
- is constantly on the look out for ways to save energy or to use green energy and to minimize the use of chemicals

www.vitens.nl



### **Project in partnership**



Polish S.M.E. Eurosteel Sp. Z.o.o.,

- has a group of 30 highly qualified and experienced employees and a toolshop of 3.000 m<sup>2</sup>
- all welders have CE welding certificates
- has wide experience in constructing complex and innovative installations for (drinking) water treatment

www.eurosteel.pl







### **Project in partnership**



Dutch S.M.E. RWB Water Services by,

- spreading the technology into the European market
- experienced in design, build, operate, and maintain of water treatment plants

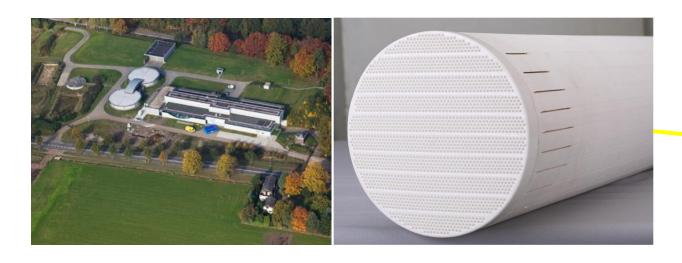


www.rwbwater.com



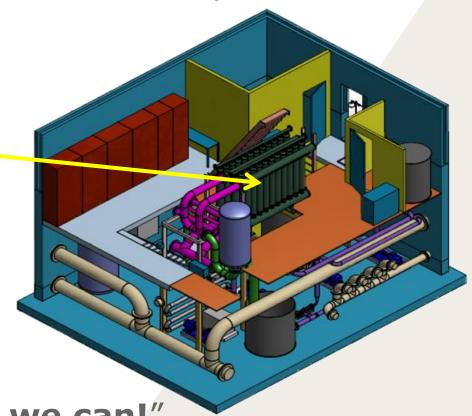










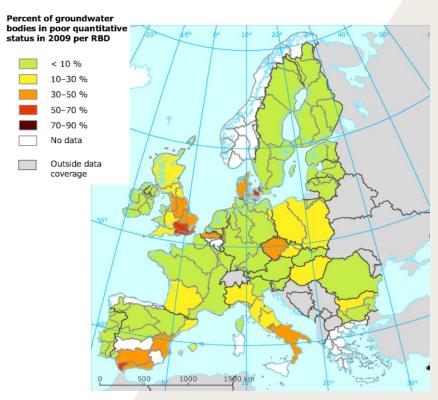

• Building first application (Full scale demonstration plant Wierden - NL)





- Validate calculated savings
- Spread the word: "Recover resources, yes we can!"








- Building first application (Full scale demonstration plant Wierden NL)
- Commercial exploitation across EU
   Drinking water companies
  - Country selection on water sources
  - Desk study on policies (groundwater and water scarcity)

### Other applications

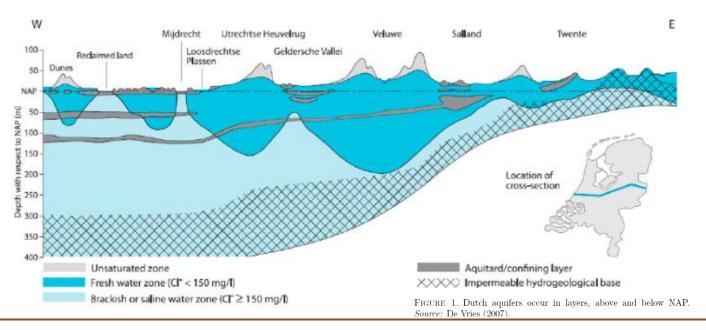
- Industrial groundwater use
- (De-)centralized drinking water production
- Validate calculated savings
- Spread the word: "Recover resources, yes we can!"

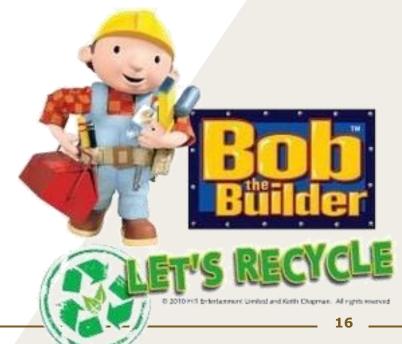






- Building first application (Full scale demonstration plant Wierden NL)
- Commercial exploitation across EU
- Validate calculated savings:


|                               | Project   | Europe               |
|-------------------------------|-----------|----------------------|
| Water reuse (m <sup>3</sup> ) | 1.000.000 | 1.000.000.000 / year |
| Energy savings                | 30%       | 30 - 80%             |
| Reduction chemical usage      | 50%       |                      |


Spread the word: "Recover resources, yes we can!"





- Building first application (Full scale demonstration plant Wierden NL)
- Commercial exploitation across EU
- Validate calculated savings
- Spread the word: "Recover resources, yes we can!"







### **IWEC** project challenges



### **Economics**

- Threats
  - Dutch groundwater tax was aborted
  - No standards for costs calculations

- Opportunities
  - Resource valuation instead of tax on usage
  - Environmental investment deduction programs





Water valuation Building the business case

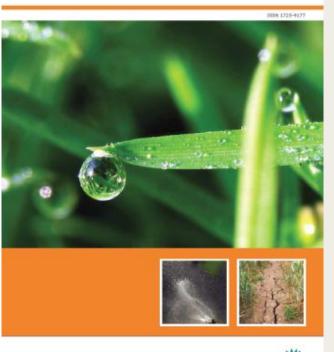


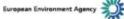
### **IWEC** project challenges



### **Policies**

- Threats
  - EU policies and legislation on water (re)use are not uniform (yet)
  - EU testing methods not harmonized (yet)
- Opportunities
  - Towards efficient use of water resources
  - Launching customer is industry frontrunner





Danish Minister for the Environment Ida Auken: Groundwater must be protected



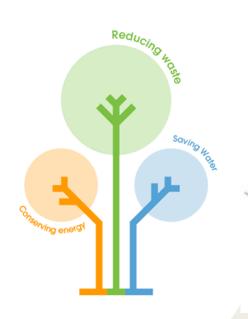


Towards efficient use of water resources in Europe








# **IWEC** project challenges



### **Technological**

- Threats
  - "Old" state-of-the-art technology turns out to be unstable
  - Complex implementation in existing building

- Opportunities
  - Implementation of Best Available Techniques
  - We can offer the alternative!





Best Available Techniques (BAT) Reference Document

fo

Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector

> Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)

> > Draft 2

20 1-1-2011



Edition EXPO, orinca Gardiano 3, E-41002 Sevina-Spain Telephone dired line -34 954458254. Switchboard 954455318. Paix 95445826 Informet: <a href="http://eloopbin.esc.esurgos.esg">http://eloopbin.esc.esurgos.esg</a>. Enall, joi-jos-eloppibiliged europa.eu</a>



# Face these challenges as a team!









### Stay up-to-date



### www.iwec-water-reuse.eu













# IWEC

water reuse 3.0







