

CIP Eco-innovation First application and market replication projects **Call 2011**

Call Identifier: CIP-EIP-Eco-Innovation-2011

Deliverable D 4.1

Monitoring plan

water reuse 3.0

Agreement number ECO/11/304469

Reporting Date 28/09/2014

Project website:

Project coordinator: André Reigersman, RWB Water Services B.V. www.iwec-water-reuse.eu

Co-funded by the Eco-innovation Initiative of the European Union

MONITORING PLAN

In the grant agreement have been appointed a number of work packages. One of the work packages is WP4 Operating and Monitoring. This document origins from an earlier sent plan in D1.4. The content of this monitoring plan is based on that. Things to be monitored:

1. ENERGY

During the project there should be a reduction of 65.000 kWh of energy. This represents a reduction of 30% in relation to the current situation.

- \cdot The energy consumption of the new installation must be monitored.
- \cdot monitoring energy use well fields (By using backwash water reuse, less groundwater has to be pumped to have the same amount of drinking water)

For the building of the plant, we should have a baseline report for energy use without reuse.

2. QUALITY:

During the project the water quality will be frequently monitored. This will happen with online measurements and by lab analysis. The following parameters are tracked online:

- turbidity effluent installation
- pH effluent installation

The following sample points should be taken regularly samples:

- influent membrane installation
- permeate Stack 1
- permeate Stack 2
- distributed drinking water
- effluent 2nd filtration step

The frequency of sampling and analysed parameters are listed in table 1:

Analysis costs						€		
January- July 2015	Sampling frequency			tariff WAP po	int	2.08	2.08	
Parameter	Influent	permeate	distributed	effluent 2nd	Wap	Euro/	Euro	
	membrane	stack 1	drinking	filtration	points	analy	total	
	installation	and 2	water	step		sis		
рН	52	52	26	12	4	8.32	1614	
EC	52	52	26	12	4	8.32	1614	
hydrogen carbonate	52	52	26	12	4	8.32	1614	
Oxygen	52	52	26	12	6	12.48	2421	
Pretreatment micro parameters	52	52	26	12	7	14.56	2825	
Pretreatment macro parameters	52	52	26	12	7	14.56	2825	
iron	52	52	26	52	4	8.32	1947	
manganese	52	52	26	52	4	8.32	1947	
aluminium	52	52	26	12	4	8.32	1614	
arsenic	26	26			4	8.32	649	
color	12	12	26	12	6	12.48	924	
taste and odor		26			6	12.48	649	
temperature	52	52			1	2.08	324	
turbidity	52	52	26	12	5	10.4	2018	
ammonium	52	52			7	14.56	2271	
nitrite	52	52			5	10.4	1622	
nitrate	52	52			7	14.56	2271	
CFU 22oC	52	52	26	26	8	16.64	3461	

CFU 37oC	52	52	26	26	8	16.64	3461
coliforms	52	52	26	12	8	16.64	3228
enterococcus	52	52	26	12	8	16.64	3228
aeromonas	52	52	26	12	10	20.8	4035
Sampling costs						0	0
total							€ 46.563

Table 1 analysis costs

3. OTHERS

- Amount of produced sludge
- Chemical use
- Operational costs
- Environmental an sustainable benefits
- User experiences